Spectroscopy for space remote sensing: Status and challenges

Cyril Crevoisier CNRS - Laboratoire de Météorologie Dynamique

cyril.crevoisier@lmd.ipsl.fr

- **1.** Earth observation from space
- 2. Atmospheric sounding

3. Needs for current and future space missions

- Improving well-known spectral regions
- Towards the use of new spectral bands
- Specific needs for active missions

4. Concluding thoughts

Earth observation

Scientific and societal challenges are strongly linked to global change and environmental questions

Knowing and understanding the Earth

- Understanding The Earth structure and the processes that control it.
- Predicting its evolution
- Understanding human impact

Live better

- Forecasting our environment in the next days/weeks
- Predicting and dealing with extreme events
- Addressing our needs (water, food)

A common need: to study and understand processes over large spatio-temporal scales, by combining all Earth sub-systems.

Observations

Earth study are highly dependent on observing capabilities.

An integrated Earth system observation for a global and homogeneous coverage of key parameters ("Essential Variables")

- in-situ observations and campaigns
- Space observation: Sentinels, contributing missions
 → Need for high quality, well validated data.

Wide range of spatio-temporal scales:

- Long-term follow-up, high need for revisits.
- Global observation but an increasing need to move towards high/very high spatial resolution.
- Study of specific objects (e.g. cloud formation).

Challenges:

- Taking into account the indirect nature of the measurement observable – scientific question link.
- Joint use of variables and/or missions.
 - ightarrow Numerical models and data assimilation

New scientific questions and new services means

new needs in observables, in measurement techniques... but also to ensure continuity!

Current and foreseen EO missions

5

Numerical Weather Prediction

-First operational application in Earth observation from space.

-Measurement of vertical profiles of temperature, water vapour, wind, surface, etc.

V. Guidard, pers. comm.

Numerical Weather Prediction

Atmospheric composition

- Monitoring of stratospheric ozone.
- Air quality and tropospheric pollution: CO, SO₂, ash, etc.
- Impact of extreme events

Volcanic eruption of Eyjafjöll as seen by...

Envisat/MISR

MetOp-A/IASI Eviafiallajökull eruption - IASI Ash radiance index 4.281 (c) ULB/LATMO

Numerical Weather Prediction

Atmospheric composition

Climate studies

Two main objectives:

- Understanding **processes** that drive climate evolution and climate change.
- Monitoring over the long term and homogeneously the climate system.

GCOS (Global Climate Observing System) international program :

Definition of 54 **Essential Climate Variables** (ECVs), with 23 that can only be observed from space. \rightarrow ECV = physical, chemical, bio. variables that critically contributes to the characterization of Earth's climate.

 \rightarrow 16 ECVs for the **atmosphere**

The Essential Climate Variables					
Domain	Essential Climate Variables				
Atmospheric (over land, sea and ice)	Surface:	Air temperature, precipitation , air pressure, surface radiation budget, wind speed and direction, water vapour.			
	Upper air:	Earth radiation budget (including solar irradiance), upper air temperature (including MSU radiances), wind speed and direction, water vapour, cloud properties.			
	Composition:	Carbon dioxide, methane, ozone, other long-lived greenhouse gases, aerosol properties.			

Essential Climate Variables for Earth's atmosphere seen by IASI-A/B/C

1. Earth observation from space

2. Atmospheric sounding

- 3. Needs for current and future space missions
- Improving well-known spectral regions
- Towards the use of new spectral bands
- Specific needs for active missions
- 4. Concluding thoughts

NWP started the need for Earth Observation from space... and the need for accurate and accessible spectroscopic data and radiative transfer models

- \rightarrow April 1st ,1960: 1st weather satellite Television Infrared Observation Satellites (TIROS).
- → First weather satellite series in **1978**: TIROS-N/NOAA program.

Main component: infrared and microwave sounders that measure the radiation field emitted by Earth system at various frequencies with a scan angle close to the vertical.

The principle of the measurement is always the same:

1. A radiation goes through the amosphere.

2. It is absorbed/reemiited/scattered by gas molecules/particules in a proportion driven by their concentration and altitude (T, P).

3. The modified radiation is measured by an instrument (outside of the atmosphere for a satellite).

MD

Atmospheric sounding in the Infrared (IR)

Shortwave infrared (0.7-3µm)

Thermal infrared (4-15µm)

Lidar (2µm)

Processing remote sensing data

Objectives:

• Processing data from current missions

Applications

Objectives:

- Processing data from current missions
- Preparing future instruments

Applications

Spectroscopic parameters

Spectroscopic parameters

Objectives:

- Processing data from current missions
- Preparing future instruments
- Validation, based on ground-based or airborne remote sensing

- **1. Earth observation from space**
- 2. Atmospheric sounding

3. Needs for current and future space missions

- Improving well-known spectral regions
- Towards the use of new spectral bands
- Specific needs for active missions
- 4. Concluding thoughts

Short-Wave Infrared (SWIR)

SWIR domain is mostly use to derive total columns of greenhouse and trace gases : CO_2 , CH_4 , CO.

Goal: to monitor and characterize surface fluxes.

Observation Method: passive spectrometers operating in 3/4 wavelengths (0.76 and 1.27 μ m O₂ bands, and 1.6 and 2 μ m CO₂ bands)

$0.76 \\ 0_2$

Atmospheric transmission in the SWIR

	Instrument	Туре	Launch date	Spectral coverage
TCCON total carbon column observing network	TCCON	Ground-based FTS network	2004	Whole spectrum
CCC2	OCO-2 (NASA)	Grated spectrometer	2014	3 bands
	MicroCarb (CNES/UKSA)	FTS	2024	4 bands (new: 1.27µm)
MICR				

→ Comparison between TCCON observations and simulations (spectro+RT code) helps identify spectrosocpic issues.

Evaluation of spectroscopic databases and radiative transfer codes

Evaluation of spectroscopic databases

Impact of a change in spectroscopy at Level 1 (spectra)

Two different spectroscopic parameter sets are tested:

old spectro:

- O₂: Tran Hartmann 08 collisioninduced absorption (CIA) model
- CO₂: HITRAN08 + Lamouroux 2010 line mixing

<u>new spectro:</u>

- O₂: empirically correction on Tran and Hartmann 2008 CIA model
- CO₂: Lamouroux 2015 model, adapted for **Speed-Dependent Y (1st order) line mixing approach** fueled with HITRAN 2012 line parameters
- Improved sampling strategy of spectrocopic parameters

Less than 1% transmission difference between **old** and **new** on forward computations. What is the impact on retrievals ?

descent 13062019

390

395

400

CO2 [ppm]

405

385

410

415

420

1000

- Use of 4 co-located in-situ measurements with OCO-2 observations
- MAGIC2019 field campaign (13th June).
- OCO-2 spectra are inversed with the 5AI retrieval code, based on 2 spectroscopies.

SWIR: Impact on the retrieved surface pressure and CO₂ column from OCO-2

The **empirical CIA correction** reduces the surface pressure bias.

It contributes to reducing XCO₂ bias along with **SDY line mixing + HITRAN 2012 model** for CO₂, compared to **previous spectroscopic parameters**.

Improving the spectroscopy helps reducing biases on level 2 ⁽²⁾

Thermal Infrared (TIR)

Improvement on spectral and radiometric characteristics call for improved spectroscopy and radiative transfer modeling

•Next generation instruments:

•2024 : IASI-NG

-16921 channels -resolution ~0.125cm⁻¹

From current to future generations of infrared sounders

Spectral resolution x2 Spectral sampling x2 Radiometric resolution 2.

From current to future generations of infrared sounders

From current to future generations of infrared sounders

Focus on H₂O

Towards the use of a new line shape in RT modeling (from Voigt to HTP profile)

Birk: H2O (1850 → 4439 cm-1), HDO (2478 → 4439 cm-1) Speed Dependent Voigt (SDV) line profile

Even in the well-known TIR range, there is still room for improvements!

New spectral bands: FORUM (FIR)

- •The new EE9 mission selected by ESA
- Goals : Earth radiative budget and 1st measurement in the Far IR.
- Launch date: 2026. In a train with IASI-NG

New spectral bands: FORUM (FIR)

•The new EE9 mission selected by ESA

- Goals : Earth radiative budget and 1st measurement in the Far IR.
- Launch date: 2026. in a train with IASI-NG

- Need for new or improved spectroscopy: methane, NO₂, N₂O, NH₃, O₃, methanol (CH3OH), abs coefficients (PAN etc).
- Work on continua of absorption.

LMD

Specific questions: Active missions

The joint CNES/DLR MERLIN: MEthane Remote sensing LIdar missioN

Goal: to improve the understanding of the global methane cycle and the processes, which govern the exchange of methane between atmosphere and biosphere.

Observation Method: Differential absorption of gaseous methane at two laser wavelengths reflected from Earth surface or dense clouds.

Launch date: 2027.

Needs for future missions

Specific questions: Active missions

0.6 0.4 0.2

spectrosocpic knowledge

Impact on vertical sensitivity of the instrument ... and on the retrieved column of CH₄

Delahaye et al.

- **1. Earth observation from space**
- 2. Atmospheric sounding
- 3. Needs for current and future space missions
- Improving well-known spectral regions
- Towards the use of new spectral bands
- Specific needs for active missions

4. Concluding thoughts

Recent and foreseen evolutions

•Instruments with increased characteristics (IASI, GOME-2, SAPHIR, TCCON, etc) :

- Detection/retrieval of new species (ex : more than 30 now "seen" by IASI).
- Improved spectral resolution and radiometric noise.
- A renewed interest (and funding...) for spectroscopy and radiative transfer for calibration/validation activities at both Level1 and Level2, even for well-known spectral regions
- •Intense work around the line at 183 GHz
- •Heavy developments in the SWIR: GHG missions (OCO-2, GOSAT, MicroCarb, CO2M, etc.)

•New coupling between spectral bands:

- IR-MW: a classic coupling (NWP, thermodynamics, clouds)
- IR-UV/Vis: Ozone and aerosols
- IR-SWIR: GHG, aerosols
- Vis/SWIR : surface, aerosols.

•New spectral bands to start exploring: SWIR (O₂ 1.27µm for MicroCarb), Far IR (FORUM), etc.

A programmatic point of view

- Future Satellite Observing System will combine:
 - High demanding reference missions for Earth Observation.
 - Research oriented missions, that can then be integrated in an operational program like Copernicus/Sentinel.
 - Constellation of small satellites
 - State vs. NewSpace missions
- To insure the success all these missions and their corresponding applications (science, societal needs), it is required to have:
 - Up-to-date and validated spectroscopy.
 - Up-to-date and validated forward and inverse RT codes.
 - Cal/Val activities, including field campaigns and innovative instrumentation.
 - Improved Earth System models.

