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Earth observation 
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• Forecasting our environment in 
the next days/weeks

• Predicting and dealing with 
extreme events

• Addressing our needs (water, 
food)

Knowing and 
understanding the 

Earth

A common need: to study and understand processes over large spatio-temporal 
scales, by combining all Earth sub-systems. 

Scientific and societal challenges are strongly linked to global change and environmental questions

• Understanding The Earth structure and 
the processes that control it.

• Predicting its evolution

• Understanding human impact

Live better



Observations
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Earth study are highly dependent on observing capabilities.

An integrated Earth system observation for a global and homogeneous 
coverage of key parameters ("Essential Variables")
• in-situ observations and campaigns
• Space observation: Sentinels, contributing missions

à Need for high quality, well validated data.

Wide range of spatio-temporal scales:
• Long-term follow-up, high need for revisits.
• Global observation but an increasing need to move towards high/very 

high spatial resolution.
• Study of specific objects (e.g. cloud formation).

Challenges:
• Taking into account the indirect nature of the measurement –

observable – scientific question link.
• Joint use of variables and/or missions.

à Numerical models and data assimilation

New scientific questions and new services means
new needs in observables, in measurement techniques… but also to ensure continuity! 



Current and foreseen EO missions
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2022

2022
• A wide variety of EO missions
• A bright future (especially 

EU/ESA Copernicus/Sentinel) 
• About half for the atmosphere



Studying Earth atmosphere
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Numerical Weather Prediction
-First operational application in Earth observation from space.
-Measurement of vertical profiles of temperature, water vapour, wind, surface, etc.

MOCAGE model of Météo-France

V. Guidard, pers. comm.



Studying Earth atmosphere
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Numerical Weather Prediction

- Monitoring of stratospheric ozone.

- Air quality and tropospheric pollution: CO, SO2, ash, etc.

Volcanic eruption of Eyjafjöll as seen by…
Envisat/MISR MetOp-A/IASI

- Impact of extreme events

Atmospheric composition



Studying Earth atmosphere
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Numerical Weather Prediction Atmospheric composition Climate studies

GCOS (Global Climate Observing System) international program :  
Definition of 54 Essential Climate Variables (ECVs), with 23 that can only be observed from space.
à ECV = physical, chemical, bio. variables that critically contributes to the characterization of Earth’s climate.

Two main objectives:

•Monitoring over the long term and homogeneously the climate system.
• Understanding processes that drive climate evolution and climate change.

à 16 ECVs for the atmosphere
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Spectroscopic measurements: from the beginning of Earth Observation
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NWP started the need for Earth Observation from space… and the need for accurate and accessible spectroscopic data 
and radiative transfer models
à April 1st ,1960: 1st weather satellite Television Infrared Observation Satellites (TIROS).
à First weather satellite series in 1978: TIROS-N/NOAA program.

Main component: infrared and microwave sounders
that measure the radiation field emitted by Earth
system at various frequencies with a scan angle close
to the vertical.



Remote sensing measurement

12

The principle of the measurement is always the same:
1. A radiation goes through the amosphere.
2. It is absorbed/reemiited/scattered by gas
molecules/particules in a proportion driven by their
concentration and altitude (T, P).
3. The modified radiation is measured by an instrument
(outside of the atmosphere for a satellite).

Earth

Top of the 
atmosphere

gas, 
particules



Atmospheric sounding in the Infrared (IR)
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Thermal infrared (4-15µm) 
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Processing remote sensing data
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Atmospheric state Radiances

Radiative 
transfer equation

Foward modeling
(RT code)

Spectroscopic 
data

Inverse 
modeling

a priori data on the 
atmospheric state

Instrument 
characteristics



Applications
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Applications
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Validation of 
« level2 »
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SWIR domain is mostly use to derive total columns of 
greenhouse and trace gases : CO2, CH4, CO.

Goal: to monitor and characterize surface fluxes.

Observation Method: passive spectrometers 
operating in 3/4 wavelengths (0.76 and 1.27 µm O2
bands, and 1.6 and 2 µm CO2 bands)

Atmospheric transmission in the SWIR

0.76 1.27 1.6 2.0 Wavelength (µm)
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Pending questions for the exploitation of past and current missions

Short-Wave Infrared (SWIR)

O2 O2 CO2 CO2

Instrument Type Launch date Spectral coverage
TCCON Ground-based FTS 

network
2004 Whole spectrum

OCO-2 (NASA) Grated spectrometer 2014 3 bands

MicroCarb (CNES/UKSA) FTS 2024 4 bands (new: 1.27µm)

à Comparison between TCCON observations and simulations (spectro+RT code) helps identify spectrosocpic issues. 
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Evaluation of spectroscopic databases and radiative transfer codes
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Evaluation of spectroscopic databases

Short-Wave Infrared (SWIR)

à Using various spectro databases helps to identify the issues. 
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Impact of a change in spectroscopy at Level 1 (spectra)

old spectro:
• O2: Tran Hartmann 08 collision-

induced absorption (CIA) model
• CO2: HITRAN08 + Lamouroux

2010 line mixing

new spectro:
• O2: empirically correction on 

Tran and Hartmann 2008 CIA 
model

• CO2: Lamouroux 2015 model, 
adapted for Speed-Dependent
Y (1st order) line mixing
approach fueled with HITRAN 
2012 line parameters

• Improved sampling strategy of 
spectrocopic parameters

Two different spectroscopic
parameter sets are tested:

calculated-observed spectral residuals evalutated on 300 TCCON spectra
(CO2 weak 1.6 µm)

Less than 1% transmission difference between old and new on forward computations. 
What is the impact on retrievals ?
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Impact of a change in spectroscopy at Level 2 (CO2)

Colocation between OCO-2 and balloon-borne instruments

ASA
Cugnaux

OCO-2

Falcon20

Amulse
AirCore

13th June: 2 AirCore + 1 Amulse AirCores

Amulse

4 CO2 in-situ
vertical profiles

• Use of 4 co-located in-situ measurements with OCO-2 observations
• MAGIC2019 field campaign (13th June).
• OCO-2 spectra are inversed with the 5AI retrieval code, based on 2

spectroscopies.
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Impact of a change in spectroscopy at Level 2 (CO2)

SWIR: Impact on the retrieved surface pressure and CO2 column from OCO-2

The empirical CIA correction reduces the 
surface pressure bias.

It contributes to reducing XCO2 bias along
with SDY line mixing + HITRAN 2012 model 
for CO2, compared to previous
spectroscopic parameters.

5AI old spectro 5AI new spectro
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From the first to the current and future generations of infrared sounders
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-8461 channels
-resolution  ~0.25 cm-1

•2006 : IASI

•First generation instruments: •Second generation instruments:

-19 channels
-resolution  ~15cm-1

12 µm15 µm

•2002 : AIRS -2378 channels
-resolution  ~0.5-2 cm-1

•1978 : HIRS
•Next generation instruments:

•2024 : IASI-NG
-16921 channels
-resolution  ~0.125cm-1

Improvement on spectral and 
radiometric characteristics call for 
improved spectroscopy and radiative 
transfer modeling

Thermal Infrared (TIR)



From current to future generations of infrared sounders
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Improved specifications: from IASI to IASI-NG (TIR)2006 2012 2018 2038

IASI/Metop (A+B+C) IASI-NG/Metop-SG (A+B+C)

2006 2012 2018 2024 2031

Spectral resolution x2
Spectral sampling x2
Radiometric resolution 2.



From current to future generations of infrared sounders
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Improved specifications: from IASI to IASI-NG (TIR)2006 2012 2018 2038

IASI/Metop (A+B+C) IASI-NG/Metop-SG (A+B+C)

2006 2012 2018 2024 2031

Spectral resolution x2
Spectral sampling x2
Radiometric resolution 2.



CO ~0.4K
Noise: ~0.2K

IASI
0.5 cm-1

For a 10ppbv CO 
perturbation:

CO ~0.8K

Noise: ~0.1K

IASI-NG
0.25 cm-1

CO2 (1%)H2O (20%) O3 (10%) CH4 (10%)CO (10%) Tsurf (1 K)T (1K) N2O (2%)

From current to future generations of infrared sounders

• An improvement by a factor of 4 at Level 2 is expected from IASI-NG.
• Is there still something to improve in the Thermal IR ? YES!



Thermal IR: Improvements in spectroscopy and radiative transfer modelling
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Focus on H2O

Towards the use of a new line shape in RT modeling (from Voigt to HTP profile)
Birk:  H2O (1850 è 4439 cm-1), HDO (2478 è 4439 cm-1) Speed Dependent Voigt (SDV) line profile
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Needs for future missions
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New spectral bands: FORUM (FIR)
•The new EE9 mission selected by ESA
• Goals : Earth radiative budget and 1st measurement in the Far IR.
• Launch date: 2026, In a train with IASI-NG

Spectral band never
seen from space!



Needs for future missions
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New spectral bands: FORUM (FIR)
•The new EE9 mission selected by ESA
• Goals : Earth radiative budget and 1st measurement in the Far IR.
• Launch date: 2026, in a train with IASI-NG

Spectral band never
seen from space!

IASIFORUM (Perrin et al.) 

• Need for new or improved spectroscopy: methane, NO2, N2O, NH3, 
O3, methanol (CH3OH), abs coefficients (PAN etc).

• Work on continua of absorption.



Needs for future missions
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Specific questions: Active missions

The joint CNES/DLR MERLIN: MEthane Remote sensing LIdar missioN

Goal: to improve the understanding of the global methane cycle and the processes, which govern the exchange of 

methane between atmosphere and biosphere.

Observation Method: Differential absorption of gaseous methane at two laser wavelengths reflected from Earth surface 

or dense clouds.

Launch date: 2027.



Needs for future missions
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Specific questions: Active missions

Choice of the two 
wavelengths on and off
à Strong requirement on 
spectrosocpic knowledge

Impact on vertical sensitivity 
of the instrument …and on 
the retrieved column of CH4

Delahaye et al.

Evaluation of various spectroscopy
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Recent and foreseen evolutions

•Instruments with increased characteristics (IASI, GOME-2, SAPHIR, TCCON, etc) :
• Detection/retrieval of new species (ex : more than 30 now “seen” by IASI).

• Improved spectral resolution and radiometric noise.

• A renewed interest (and funding…) for spectroscopy and radiative transfer for calibration/validation activities

at both Level1 and Level2, even for well-known spectral regions

Concluding thoughts

•Heavy developments in the SWIR: GHG missions (OCO-2, GOSAT, MicroCarb, CO2M, etc.)

•Intense work around the line at 183 GHz

•New coupling between spectral bands:

•New spectral bands to start exploring: SWIR (O2 1.27µm for MicroCarb), Far IR (FORUM), etc.

- IR-MW: a classic coupling (NWP, thermodynamics, clouds)

- IR-UV/Vis: Ozone and aerosols

- IR-SWIR: GHG, aerosols

- Vis/SWIR : surface, aerosols.
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A programmatic point of view

Concluding thoughts

• Future Satellite Observing System will combine:
- High demanding reference missions for Earth Observation.
- Research oriented missions, that can then be integrated in an operational program like Copernicus/Sentinel.
- Constellation of small satellites
- State vs. NewSpace missions

• To insure the success all these missions and their 
corresponding applications (science, societal 
needs), it is required to have:

- Up-to-date and validated spectroscopy.
- Up-to-date and validated forward and inverse 

RT codes.
- Cal/Val activities, including field campaigns and 

innovative instrumentation.
- Improved Earth System models.


