Spectral shape modeling and spectra analysis for laboratory and atmospheric measurements

H. Tran

Laboratoire de Météorologie Dynamique, CNRS UMR 8539,

Sorbonne Université

ha.tran@lmd.jussieu.fr

Introduction: Atmospheric retrievals

Spectral shapes \rightarrow Collisional (pressure) effects on the spectral shape

Introduction: isolated lines and closely spaced lines

ACE spectra at different tangent altitudes

Bernath et al., GRL, 32, L15S01 (2005)

The Voigt profile

Spectral shape of an isolated line

The absorption coefficient is given by

$$\alpha_{fi}(\sigma) = S_{fi}I_{fi}(\sigma - \sigma_{fi})$$

 \rightarrow Line intensity is distributed around the line position

$$S_{fi} = \int_{\sigma_{fi}-\Delta}^{\sigma_{fi}+\Delta\sigma} d\sigma \alpha_{fi}(\sigma) \cong \int_{-\infty}^{+\infty} d\sigma \alpha_{fi}(\sigma)$$

 \rightarrow Normalized line profile $I_{\rm fi}(\sigma)$

$$\int_{-\Delta\sigma}^{+\Delta\sigma} d\sigma \ I_{fi}(\sigma) \cong \int_{-\infty}^{+\infty} d\sigma \ I_{fi}(\sigma) = 1$$

The Doppler broadening

A molecule having a speed v#0, absorbs or emits at a wavenumber σ , which is different of σ_{fi} of this molecule at v=0.

The corresponding Doppler shift is: $\sigma = \sigma_{fi} (1+v_z/c)$ where v_z the radiator velocity component along the wave propagation vector.

The line profile is a Gaussian profile

$$I_D(\sigma - \sigma_{fi}) = \sqrt{\frac{\ln 2}{\pi}} \frac{1}{\Delta \sigma_D} \exp\left(-\ln 2\left[\frac{\sigma - \sigma_{fi}}{\Delta \sigma_D}\right]^2\right)$$

where
$$\Delta \sigma_D = \left[\frac{2k_BT}{mc^2}\ln 2\right]^{\frac{1}{2}} \sigma_{fi}$$

is the HWHM of the line.

The Lorentz broadening and shifting

For an isolated transition, the <u>main</u> effects of intermolecular collisions (pressure) are the (Lorentz) **broadening and shifting** of the line

The Voigt profile

Let's consider a speed class: $[(v_z) - (v_z+dv_z)]$ the corresponding spectral domain is $[(\sigma') - (\sigma'+d\sigma')]$, with $\sigma' = \sigma_0(1+v_z/c)$

Due to collisions, the spectral intensity $I_D(\sigma' - \sigma_{fi})d\sigma'$ is redistributed as a Lorentz profile centered at σ' . The final contribution of this speed class at σ is thus:

$$I_{D}(\sigma' - \sigma_{fi}) d\sigma' I_{L}(\sigma - \sigma')$$

The resulting profile is then obtained by summing over all speed classes (or all σ ') :

$$I_V(\sigma - \sigma_{fi}) = \int_{-\infty}^{+\infty} d\sigma' I_D \left(\sigma' - \sigma_{fi}\right) I_L(\sigma - \sigma')$$

The Voigt profile is thus a convolution of a Gaussian profile (Doppler effect) and a Lorentzian profile (collisional effect).

The Gaussian, Lorentzian and Voigt profiles

The Gaussian, Lorentzian and Voigt profiles

Comparaison between the Gaussian, the Lorentz and the Voigt profiles.

FTS ground-based absorption spectrum (CO₂)

Courtesy of S. Payan

Non-isolated transitions: Line-mixing effects

Line-mixing effects

Collisions induce transfers of populations between the levels of the two lines that lead to transfers of intensity between the lines. In some cases, for closely spaced lines, the Voigt profile fails when P increases. It predicts shapes that are too broad.

Line-mixing effects: Absorption coefficient

$$\alpha^{LM} \ (\sigma \) \propto \sum_{line \, \ell} \sum_{line \, k} \ \rho_\ell \, d_\ell \, d_k \ \langle \, k \ | \ [\, \Sigma - L_0 \ -iPW \]^{-1} \ | \ell \rangle$$

- ρ_k populations
- d_k matrix element of radiation-matter coupling tensor
- Σ , L₀ matrix of positions

W relaxation operator. All effects of collisions. Independent of σ within the impact approximation (not too far in the wings)

 $W_{lk} \neq 0 \rightarrow$ Line coupling between $|k\rangle$ and $|l\rangle$

 $W_{lk}=0 \rightarrow No line coupling (Lorentz)$

$$\alpha^{Lo}(\sigma) \propto \sum_{k} \rho_k d_k^2 \times \left[\frac{\gamma_k}{(\sigma - \sigma_k - \delta_k)^2 + \gamma_k^2} \times \frac{1}{\pi} \right]$$

Line-mixing effects: Relaxation matrix

Relations for W

$$\langle k | W | k \rangle = \Gamma_k - i\Delta_k$$

Det. Balance:
$$\rho_{l} \langle k | W | l \rangle = \rho_{k} \langle l | W | k \rangle$$

Sum rule: $\sum_{\text{lines } l} d_{l} \langle l | W | k \rangle = 0$

For moderate line overlapping, a first order perturbation approach is possible. Then we only need to know one coupling parameter (Y, related to the W matrix elements) per line

$$Y_k = 2 \sum_{\ell \neq k} \frac{d_\ell}{d_k} \frac{\mathbf{W}_{k\ell}}{\sigma_k - \sigma_\ell}$$

Line-mixing and remote sensing: Monitoring Greenhouse Gases from space

Nadir looking instruments onboard satellites Greenhouse gases Observation SATellite (GOSAT-2, in orbit) Orbiting Carbon Observatory (OCO-2, NASA, in orbit) MicroCarb (CNES, under study)

665 km 10km diameter

Spectral regions and aims

- CO_2 from 1.6 µm (weak) and 2.1 µm (strong) bands
- Air mass from O_2 A band (0.76 μ m)
- CH_4 from $2v_3$ band (near 1.7 μm)
- aerosols from CO_2 and O_2 bands

Detection/quantifying sinks and sources (1 ppm for x_{CO2}, 0.3 %)

 \rightarrow Extreme <u>accuracy</u> of spectra modelling. Huge constraints on the spectroscopic data and the prediction of pressure effects (collisions and spectral-shape)

CO₂: ground-based measurements

O₂: Ground-based measurements

Line-mixing effects: Laboratory studies

SPECATMOS: Spectroscopy and Atmosphere. Measurements and modeling Fréjus, 15/05/2022 – 20/05/2022

Influence on retrievals: O₂ ground-based measurements

 O_2 A band: Relative errors on surface pressures retrieved from atmospheric spectra

Atmosphere. Measurements and modeling Fréjus, 15/05/2022 – 20/05/2022

Influence on retrievals: CO₂ ground-based measurements

Significant errors on the CO₂ atmospheric amount. Sinks and sources !!! \leftarrow Fits of a ground based transmission spectra in the region of the 2 v₁+ v₃ band of CO₂

Other systems

CH₃Br, 500 hPa, 234 K, v_6 band

Isolated line

Limits of the Voigt profile

Measured and adjusted spectra using the Voigt profile.

Limits of the Voigt profile

The Voigt profile neglects:

1. The velocity changes induced by collisions.

The detailed balance:

$$P(\vec{v} \to \vec{v}') \times f_{MB}(\vec{v}) = P(\vec{v}' \to \vec{v}) \times f_{MB}(\vec{v}')$$

 \rightarrow change from v to v' < v is more probable than that from v to v' > v.

- → reduction of the Doppler broadening → collisional narrowing effect or Dicke narrowing effect
- **2. The speed-dependences** of the collisional width $\Gamma(v)$ and shift $\Delta(v)$ of the line.

This also (in general) leads to a narrowing of the line

Limits of the Voigt profile: atmospheric retrieval

In situ absorption spectrum of tropospheric H₂O recorded by balloonborne diode laser and its fit using the Voigt profile

Durry et al, JQSRT 94, 387,2005

Limits of the Voigt profile: Influence on atmospheric retrievals

HF profile retrieved from ground-based absorption FTIR measurements (Jungfraujoch station) in the (1-0) R(1) microwindow by using the Voigt profile and the Soft Collision model, compared with the HALOE (Halogen Occultation Experiment) profiles smoothed.

Barret et al, JQSRT 95, 499, 2005

Widely used non-Voigt approaches

Simple non-Voigt approaches: the velocity changes effect

The Galatry (soft collisions, SC) profile:

- Assumes that radiators undergo only a very small changes per collision
- Introduces a velocity changing rate v_{VC} related to the diffusion coefficient

The Nelkin-Ghatak (hard collisions, HC) profile:

- Assumes that velocity memory is lost after each collision
- Introduces a velocity changing rate v_{VC}

We can show that the SC model is more appropriate for systems for which the active molecule is much heavier than the perturber.

However, experiences show that the SC and HC models lead to similar quality in term of residual fit of measured spectra

Simple non-Voigt approaches: the velocity changes effect

SPECATMOS: Spectroscopy and Atmosphere. Measurements and modeling Fréjus, 15/05/2022 – 20/05/2022

Pressure dependence of the frequency optical collisions obtained for the R(24) line of CO_2 in air from the NGP, GP and single-spectrum fits. The green line is the frequency of optical collisions calculated from the mass diffusion coefficient

The collisional narrowing parameter is non linear with pressure

Simple non-Voigt approaches: the speed dependences

- The polynomial dependence of Berman-Pickett

$$\Gamma(v_{r}) \propto v_{r}^{p} \qquad \Gamma(v_{a}) = \int \Gamma(v_{r}) \cdot f(v_{r}|v_{a}) dv_{r}$$
• The quadratic dependence of Rohart
$$\Gamma(v_{a}) = \Gamma_{0} + \Gamma_{2}[(v_{a}/\bar{v})^{2} - 3/2] with\Gamma_{0} = \langle \Gamma(v_{a}) \rangle_{v_{a}}$$

$$m_{active} \geq m_{buffer}$$
Weak speed dependence
$$v_{a} < < v_{r} # v_{b}$$

$$\Gamma(v_{a}) # Cte$$

$$m_{active} = m_{buffer}$$

$$m_{active} < m_{buffer}$$

$$m_{active} < m_{buffer}$$

$$m_{active} < m_{buffer}$$

$$m_{active} < v_{b}$$

$$\Gamma(v_{a}) # \Gamma(v_{c})$$

Simple non-Voigt approaches: the speed dependences

707<-606 and 717<-616 lines (at 0.83nm) of pure H_2O (left) and H_2O /air (right)

Speed dependent Voigt profile: Remaining problems

"Today" situation for line-shape study

- Thanks to the development of high resolution and S/N laboratory techniques (eg CEAS, CRDS) and spectra analysis techniques (multispectrum fits) the **vast majority of experimental** studies now **clearly evidence** the **limits of the Voigt**. **Various fitting line shapes** are used, chosen according to ad hoc criteria, so that the available data are inconsistent with no consensus.

Very ambitious and precision-demanding remote sensing experiments are operational, under study or being developed (GOSAT, OCO, CarbonSat, MERLIN, Micro Carb) which require an accuracy of spectra simulations (<0.3%) that prohibits the use of the Voigt profile

A functional form for non-Voigt line shapes for spectroscopic databases and applications

Requirements for the proposed line-shape

Urgent need for a **better isolated line shape** model and associated data to fit experimental/calculated spectra and feed databases used for remote sensing. This line shape should fulfill various constraints:

- 1- Take into account the various processes that affect the line profile (Doppler, molecule velocity changes, speed dependences of broadening and shifting) and be sufficiently physically-based to describe the (experimental) line profiles of various transitions of various gases with an accuracy (<0.1%) fulfilling the remote sensing accuracy needs</p>
- 2- Be **based** on **well identified line-by-line parameters** with **known** and physically based **pressure dependences** for storage in databases
- 3- Contain simpler models as limiting cases in order to maximize the possibility to use previously published results obtained using simpler profiles
- 4- Require CPU time compatible with a use in atmospheric spectra calculations (many lines and layers).
- 5- Be compatible with a treatment of line-mixing

The Hartmann-Tran (HT) profile

\rightarrow The HT profile takes into account

- The collision-induced velocity changes (Dicke narrowing, hard collision model): v_{VC}
- The speed dependences of the collisional line width and shift (quadratic model): Δ_2, Γ_2
- The correlation between velocity- and internal-state-changes: \mathbf{n}

 \rightarrow The functional form of the model can be expressed as a combination of the Voigt functions \rightarrow the HT profile can be calculated as quickly as the Voigt profile

 \rightarrow The limits of the HT profile correspond to simplified line-shape models \rightarrow parameters obtained with these models can be used with the HT profile with the appropriated parameters set to zero.

Profile	Parameters	Limit of the HT profile
HT	$\Gamma_0, \Gamma_2, \Delta_0, \Delta_2, \nu_{VC}, \eta$	
qsdHC	$\Gamma_0, \Gamma_2, \Delta_0, \Delta_2, \nu_{\rm VC}$	η = 0
qsdV	$\Gamma_0, \Gamma_2, \Delta_0, \Delta_2$	$v_{\rm VC} = \eta = 0$
HC	$\Gamma_0, \Delta_0, \nu_{\rm VC}$	$\eta = \Delta_2 = \Gamma_2 = 0$
V	Γ_0, Δ_0	$v_{\rm VC} = \eta = \Delta_2 = \Gamma_2 = 0$

Example of the use of the HT profile: the MERLIN satellite project

<u>Objective</u>: Measure methane amounts in the atmosphere

<u>Observation method</u>: differential absorption of gaseous methane at two laser wavelengths reelected from Earth

surface

 \rightarrow Measuring absorption cross-sections of methane at 1.645 µm (2v₃ band)

Spectroscopy for MERLIN: 0,2% accuracy required!

Spectroscopy for MERLIN: 0,2% accuracy required!

Fréjus, 15/05/2022 – 20/05/2022

Summary

- Spectral shape has become a key issue for high precision soundings (e.g. greenhouse gases)
- When line is isolated, the Voigt profile fails to model isolated line-shape, velocity effects should be taken into account
- When lines are closely spaced, line-mixing should be taken into account
- Increasing evidences of influence of refined spectral shape effects for remote sensing
- Need to take into account both line-mixing and velocity effects; through the HT profile -> profile recommended by IUPAC and adopted by the HITRAN spectroscopic database

For more details

Second Edition

ELSEVIER

COLLISIONAL EFFECTS ON MOLECULAR SPECTRA

LABORATORY EXPERIMENTS AND MODELS, CONSEQUENCES FOR APPLICATIONS

> Jean-Michel Hartmann Christian Boulet Daniel Robert