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1 Introduction	

In most of the case, the signal measured by an optical sensor cannot be translate directly into atmospheric 

parameter.  

For each instruments, it is necessary to develop an algorithm allowing to infer target parameters (e.g. vertical 

profiles of temperature or gas concentrations) from spectral measurements (radiances).     

To distinguish the principal algorithm classes used, the term of retrieval method is usually used. In all the cases 

it is necessary to solve the direct problem: to have an algorithm allowing to simulate/calculate signal that should 

receive the instrument for a given state of the atmosphere and for a given observation geometry.     

It is easy to understand that this calculation will be so much reliable that instrument model itself will be the more 

accurate, as for the radiative transfer calculation.   

Then it is necessary to build an accurate and efficient retrieval method (often iterative, often with dumping 

because “ill posed”) able to better account for information content in the measured atmospheric signal. 

In addition, it is necessary for operational processing purposes, to automate processes and to optimize calculation 

time (and then sometimes apply approximations) which is not always fitted the ultimate accuracy that could be reach 

with a more meticulous algorithm.      
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2 Spectra	retrieval	

2.1 	 Retrieval	principle	

 The problem we have to consider is to use 

available information at the best: spectrum or set of 

atmospheric spectra corresponding to one or more 

situations (line of sight) from which it is possible to 

"draw parallels" one or more parameters to be 

determined. 

But in most cases, received signal by an onboard 

sensor is not directly interpretable in terms of 

atmospheric parameters. This requires for each 

instrument to develop an algorithm allowing, from 

spectral measurements, to infer the desired 

parameters (concentration profiles for example). 

 Inverse model 



Instrumental effects : example of IASI instrument line shape (ILS) :  

2800 2850 2900 2950

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 wavenumber (cm-1)

ra
di

an
ce

 (1
0-7

 W
/c

m
2 .sr

.c
m

-1
)

 

2800 2850 2900 2950

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 wavenumber (cm-1)

ra
di

an
ce

 (1
0-7

 W
/c

m
2 .sr

.c
m

-1
)

 

2.2 Some	approaches	for	multi‐spectrum	setup.	

We present here briefly 3 methods : 

 Two methods that can be implement at low or medium spectral resolution 

o onion-peeling technique 

o Mill’s Method 



 Global fit method implemented for high resolution spectra. It consists to fit simultaneously (least square meaning) all 

parameters (vertical profiles, but also solar spectrum, ILS, aerosol optical depth, …) for one to several species, for all 

the Line of sight, and for all the selected spectral windows. 

 

 

 
Onion peeling Method 



2.3 	 Least	square	fitting	of	the	spectra.	

 

We have a set of spectral measurements (a spectrum) which are representatives of a set of parameters that we want to 

determine values.  

 

Let use the following notations :  

 index i correspond to a given spectral element. 

 We call npt the total number of considered spectral points 

 index j (or k) corresponds to one of the np parameters to be determined.  

 

Parameter determination will be of course possible only if criteria npt  np is verified.  

 

Let call :  

 Y the measured quantity (e.g. spectral radiance) 

 Ŷ  (or )X(F )  the radiance calculated with a model  

 X the parameters to be determine 

 E  the difference between observed and calculated spectrum 

  



General relation between measured quantities and model parameters can be written as :   

 ijijiii e)x(feŷy   (1) 

2.3.1 	Linear	least	square	

Let consider a simple case where quantity measured can be expressed using a linear model. Eq. (1) can then be written 

using a matrix form : 

 EFXEŶY   (2) 

Spectrum Ŷ is sometimes call synthetic spectrum. 

 We are looking to determine parameters jx  that give the best reproduction of measurements, that is to say the 

ones for which  the differences  ie    jiji xfy   are the lowers possible. Differences  ie  are often called residuals. 

 



 

  



Then, we are looking to determine parameters jx  (that give the best fit of measurements) for which  the residuals ie  are 

the lowers as possible. The corresponding parameters minimizing 2  function defined by : 
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Where iy is representing the standard deviation on iy , and where 2
ii y/1w   is the corresponding weight. 

We define in addition reduced 2  defined as : 
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Then we define a quality criteria of the fit that would be statistically so much better that it would be close to 1 (residuals 

equivalent to measurement noise). 

 When 2
r  is  > 1, retrieval is not satisfactory. 

 When 2
r  is < 1, values of measurement errors are likelihood overestimated. 

 We mentioned previously that target parameters jx  are the one minimizing 2  function. We can rewrite this 

function using matrix notation : 

 EWET2   (5) 



Where TE represents transpose of ŶYE   vector, and where W is a diagonal matrix having weights iw  as diagonal 

elements (inverse of variances). Non-diagonal elements of W can be different from zero when there are some 

correlations between the spectral points.  

 One necessary condition to have minimum of 2  is that derivatives with respect to each parameter be null : 
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Using matrix notation (5) and using the expression of E derived from equation (2), the above equation can be written : 

      0FYWFY XX
X

T 

  (7) 

 

Using matrix theory it is shown that the above equation is equivalent to : 

   YWFFWF TT
X  (8) 

 

Equation (8), called normal equation has the solution : 
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 Insofar as npt-np >> 1, an estimate of the parameter error (confidence interval 68%) is given by : 
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Where jx  is estimation derived from (9) for the jth target parameter. 

2.3.2 	Non‐linear	least	square	

The model used to reproduce measurements is usually non-linear, that is to say that there is no matrix relationship Y = 

F X. However, in some special cases it is possible to linearize equation (1) using a suitable change of variable : 

   'ex'f'ygexfy ijijiijiji   (11) 

With :  

  ii yg'y   

  (12) 
 

   ijijijij exfg'ex'f   (13) 

 



 This linearization requires modifying the weights. Indeed, putting    'ŷgŷet'ygy i
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i
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We must therefore minimize : 
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either : 
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Where the new weights wi '  have the following expression : 
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Since the partial derivatives of the variable change function and its inverse are connected by : 
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It then returns the minimizing to the linear case since by hypothesis : 

 'ex'f'y ijiji   (19) 

 

2.3.3 	Linearization	of	the	forward	model	

 When equation (1) linking the model parameters and measured values is inherently nonlinear, we can try to 

linearize the model by a Taylor expansion in the vicinity of the initial solution X0. We can then write : 
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 By retaining in (20) that the linear terms in X, we obtain in place of equation (2) : 

     2
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In which : 

  0
XF  represents the value of the model for initial parameters X0, 

  0
XK  represents derivative matrix (Jacobian) of the model with respect to parameters, in the vicinity of the 

initial solution X 0  with : 

  
j
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j,i x

fk X
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 E2 represents the difference vector (or deviation vector) which may have different statistical properties of the 

E vector introduced in (2), because of the linearization powered 

 

Then, equation (21) can be rewritten : 

     2
00 EKFY XXX                with : 0

XXX   (23) 

 

 One can then apply linear least squares method on X , leading to the following normal equation : 

     XX FYWKWKK TT   (24) 

That is to say : 

     XX FYWKWKK T1T 


 (25) 

 In practice, the inversion algorithm is iterative as in the flow chart shown in the following figure. 



solution initiale
X  0

linéarisation autour de X

calcul de l'accroissement    X
X = (K  WK)  K  W(Y-F(X))T -1 T

X +   X  X

test de convergence

  Fin

ouinon

nouvelle valeur X






 
Flowchart of the inversion algorithm of the least squares method with damping 



2.3.4 	 Damped	least	square	

 Insofar as the Taylor expansion limited to the first order (20) is not strictly correct, the value of parameter 

increment X  obtained by solving the equation (24) may be unrealistic and be particularly sensitive to measurement 

noise (uncertainty on observations Y). Under these conditions, it may be useful during the iterative process to limit the 

variations of parameters. This is called damped least squares, what is achieved by replacing the 2 function by the new 

Z function (cost function) defined by : 

 XX
1

a
TT SWEEZ    (26) 

with : 

  XFYŶYE   (27) 

 

where  is the damping parameter and Sa  is an a priori estimate (or prior estimate) of the variance-covariance matrix of 

the parameters (assumed diagonal here). Thus, during the iterative process one penalizes too large variations of 

parameters with respect to their errors as they can be estimated a priori. Indeed, the diagonal elements of the variance-

covariance matrix provide a statistical estimate of the error in the determination of the parameters. The introduction of a 

damping implies a constraint, on the variation of these parameters during the fit, in a domain limited approximately by 

the value of their error.  

  



After linearization, the minimization of the new cost function Z defined in (26) leads to a new increment calculable as : 

     XX FYWKSWKK T11
a

T 
  (28) 

 

We find under this form the expression used by Rodgers. 

Two pitfalls must be avoided : 

 if  is too large (high damping), the solution will tend to remain confined to the vicinity of the initial solution X0 , 

although it is not the optimal solution; 

 if  is too small, one are practically reduced to the case of least squares without damping (this is the case if we 

make  = 0 in equation (26). 

 In fact the  parameter may be changed during the iteration process and may tend to zero in principle when the 

method converges. In practice, when a solution is obtained which appears to be satisfactory, one starts again from this 

solution as an initial value with zero damping and one verifies that the new solution does not differ from the initial 

solution (deviations lower than errors on the parameters). This means that the judicious choice of the parameter  will 

more or less accelerate convergence, but does not affect, in principle, the solution found.  

 



2.3.5 	Levenberg‐Marquardt	method.	

 We discuss in this section a method that does not seek to come down to a linear relationship between the 

measured variables and parameters that have to be determined, but which is a procedure allowing to improve, at each 

step of an iterative process, the initial values of a set of given parameters, and this by minimizing the merit function 2 

defined above (equation (3) and (4)). This section has been writing using Numerical Recipes in Fortran2. 

 Supposing that the function 2 (expression (3) and (5)) can be approximated by a quadratic form : 
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where B is the gradient vector and D the Hessian matrix whose elements are defined respectively by : 
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2 Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical Recipies in fortran (second edition)., Cambridge University Press, Cambridge, (1992),  

 



In order to come down to a matrix writing more widespread of the problem, we define the matrix K and the matrix L as 

follows : 
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Then one can express the vector B and the matrix D in the following manner : 

 WEK2B T  (34) 

  WELWKK2D TT   (35) 

If 0XXX  , we can rewrite equation (29) as: 

       XXXXX WELWKKWEK2 TTTTT022    (36) 
 

Deriving equation (36) with respect to X , one obtains: 

     XX WELWKK2WEK2 TTT2   (37) 
 



if X  minimize  X
2  then   0X

2   and from above we have : 

    WEKWELWKK T1TT
X


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This set of equations is solved for the increment X  that gives us the new parameter values for the next iteration (if they 

actually improve 2 ) : 

 XXX
0   (39) 

Using equation (38) implies that one is able to calculate the gradient and the Hessian of 2 .  

This poses no problem in principle because we know to write the forward model.  

Indeed, 2  given by the expression (3) depends only on the values of the measured quantity, their estimation by the 

forward model   XFŶ  , and uncertainty between measured value and estimation of the model. When derivate with 

respect to the target parameters, there remains only the term depending on the model and calculation of derivatives is 

therefore possible. 

We can see that the elements of the matrices K and L, needed to calculate the Hessian matrix (expression (35)), depend 

on the first derivatives and second derivatives of 2  (expression (32) and (33)) with respect to parameters. Some 

conventional treatments ignore the second derivatives, but do not always justify this approximation. We will also adopt 

this approximation after some explanations.  



 The second derivative term can be removed when nil (case of linear dependence) or small enough to be neglected 

compare the terms involving the first derivatives. But the term multiplying the second derivative is  ii ŷy  . For a 

suitable model, this term should be close to random measurement error at each point (of any sign) and should generally 

not be correlated with the model. Therefore, the second derivative terms tend to cancel when one summarizes on 

measurement points. In addition, it should be noted that the presence of the second derivative terms can be destabilizing 

if the model reproduces poorly measurement points or if it is contaminated by outliers that will be difficult to 

"compensated" by points for which differences have opposite signs. 

 In conclusion, we will use as definition of the elements of the Hessian matrix : 

 WKK2D T  (40) 

and we rewrite the expression (38) in the form : 

    WEKWKK T1T
X


  (41) 

 

If now the expression (36) is a poor local approximation of the function we seek to minimize, the gradient method of 

steepest descent with predetermined step (steepest descent method) consists to estimate a new value of the target 

parameters from the gradient vector multiplied by a positive damping coefficient μ and small enough that this estimate 

does not give a value too far from the starting solution X0  : 

 WEK2B T
X    (42) 



and a new value of the parameters is determined in this way : XXX
0   

 

 Two methods, corresponding to the case where the model is good or bad accounted for measurements 

respectively, are considered when using an order 2 development of the function to be minimized. The Levenberg-

Marquardt brings together these two methods in a single method.  

 The method of steepest gradient with predetermined step (42) is used far from the minimum, gradually giving way 

to the method of the inverse Hessian (41) when approaching the minimum. This method is of course iterative and 

determines a solution step by step changing at each step the relative importance of the two processes for the reduction 

of 2 . 

 2  is dimensionless while elements B have the dimension of jx/1  (each element of B can be of different 

dimension). The multiplicative constant μ in equation (42) must therefore have the dimension of 2
jx . Thus the inverse of 

the diagonal elements of the Hessian matrix   j,j
TWKK/1  (having the dimension of 2

jx ) allow us to obtain an estimate 

of the "bounds" of the constant μ, but this interval may be unrealistic, it is then divided by a factor   dimensionless 

with the opportunity to take it definitely below 1 allowing to increase the range in which is the new solution. We 

therefore replace equation (42) by integrating the factor of 2 in the   factor by : 
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and using matrix notation, we can write : 

 WEKI T
X   (44) 

where I is the identity matrix and   is the matrix whose elements are given by : 

     np,1jWKK j,j
T

j,j     

  (45) 

   kj;np,1k,j0k,j   

The relation (43) or (44) is true only if   j,j
T WKK/1  is positive for all k, which is true given its definition (equation 

(31)) for j = k and neglecting the second derivatives. 

The Levenberg-Marquardt combines equations (44) and (41) for determining a new increment X  : 

    WEKIWKK TT 1
X


   (46) 

 

which is equivalent to define a new Hessian matrix IWKK'D T   

When  is very large, the matrix D' is "forced" by its diagonal elements and equation (36) tends to be identical to 

equation (44).  

In contrast, when  is close to zero, equation (36) tends to be identical to equation (41). 

A set of input data being fixed and for a selected parameter X to retrieve, the inversion process is iterative. 

 



 It is necessary to establish a criteria to stop the iteration because in practice it is rarely to reach 12  . In fact, the 

sought minimum represents only the best statistical estimate of the parameters X and a parameter change that modify 

the 2  of an amount lower than 1 is rarely significant.  

 When acceptable minimum has been found, we recompute the Hessian matrix 'D  for  = 0. When inversed, this 

matrix gives an estimate of the variance-covariance matrix of the errors on the determination of the retrieved parameters 

(the diagonal elements of the matrix corresponding to the variances). We can then obtain a confidence interval 

(confidence level of 68%) for each retrieved parameter. 
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where 2
r  is the reduced 2  (equation (4)) and where   1

jj
TWKK


 is the jth diagonal element of the inverse Hessian 

matrix. 



solution initiale
X  0

calcul de       (X)

test de convergence

 2

résolution du système d'équations
normales pour  X

  2(X)<

  / 10  10.

X        X +    X

oui
non

calcul des incertitudes

Fin

calcul de



(X+    X)  2 



(X+    X)  2  (X+    X)  2  2(X)

 
Flowchart of the inversion algorithm of Levenberg-Marquardt 



  

2.4 A	priori	information		

 Until then (except in 2.3.4), in the process of calculation, any constraints on the physical reality of the solutions 

have been taken into account during the retrieval. Then It could be possible that solution determined by the Levenberg-

Marquardt corresponds to a minimum of the cost function but has no physical reality. We therefore introduced an 

additional constraint to take into account the consistency of the solutions via a priori information on the target 

parameters. 

 The a priori information can, for example, be the vertical profile of concentration of a chemical species you want 

to measure. In general, it is the state of the atmosphere known before the measurement. The a priori profile can be 

used for simplicity as starting profile (first guest) but it is not an obligation. 

This additional constraint is added to the cost function defined above ( 2  or Z) but 0xxX   becomes axx   

where ax  is the vector of a priori values of the target parameters (before measurement), it is also a starting solution 

having a physical meaning.  

We can also introduce the inverse of the error matrix, 1
eS  whose values correspond to the diagonal elements iw . 

Then we have : 
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aS  is an a priori estimate of the variance-covariance matrix of the parameters. Thus, one penalizes during the iterative 

process too large variations of parameters with respect to the a priori solution, taking into account the satisfactory 

"fluctuations" around this solution based on errors, also estimated a priori, the diagonal elements of the variance matrix 

covariance giving a statistical estimate of the error in the determination of the a priori.  

Combined with the gradient method of steepest descent with undetermined step (as in the Levenberg-Marquardt 

described before) the increment of iteration has for new term: 

       a
1

a
1

e
T1

a
1

e
T xxSESKISKSK

1
X   

  (49) 

 

Thus, a new expression of the confidence interval (confidence level of 68%) for each retrieved parameter that 

takes into account the a priori information and those forces the solution in a field of physical validity, is given by : 
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3 Information	content	

 Consider the case of remote sensing measurement of a vertical concentration profile. The efficiency and resolution 

(vertical) of a remote sensing sounding can be expressed in two different ways depending on whether one considers 

only the quality of the forward model (weighting function) or that takes into account the "power of the inverse model 

to resolve the fine vertical structures of the atmosphere "(averaging kernels). These two variables are used to represent 

each spectrum, the contribution to the absorption of molecules of the studied species according to their distribution in 

altitude. 

3.1 	 Weighting	functions/	Jacobians	

 To show the weighting functions, one must use the expression between the observed spectrum of the state vector 

and the forward model  : 

  )b,x(Fy  (51)  

 In this expression x  is the state vector of np  parameters, b represents the model parameters which are not fully 

known to the user, such as the spectroscopic parameters, the instrument line shape, weather data type temperature 

profiles and pressure. The term  is the experimental error. 



During the retrieval, we are looking to determine the state vector which allows better simulation of the observed 

spectrum through a radiative transfer algorithm, which is to write the vector : 

     aa x,b,b,xFRx,b,yRx̂   (52) 

Where : 

 x̂ is the retrieved state vector. 

 R is the function of the inverse model (transfer function). 

 ax  is the state vector with the a priori values of the desired parameters. 

 

By linearizing the forward model in the vincinity of ax  we have: 

     aaxa x,b,xxKb,xFRx̂   (53) 

 

It thus shows the weighting function matrix or Jacobian xK  :  
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It is a matrix K (m spectral points  n retrieved parameters)  

 



The weight functions represent the sensitivity of the model parameters that are to be retrieved. These functions 

usually have the form of a peak for limb line of sight and are broadened for line of sight from the ground or nadir. 

The width at half maximum of weighting function peaks gives information on the vertical resolution of the 

measurement and on the sensitivity of the spectrum with respect to each retrieved parameter (sensitivity according to 

the altitude, for example). 

 

 

 
Graph of weighting functions in 2 and 3 dimensions for each altitude of the ozone profile (IASI balloon experience) 
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3.2 	 Averaging	kernels	

By linearizing the inverse model R with respect to y we obtain : 

      aaxyaa x,b,xxKGx,b,b,xFRx̂   (55) 

where 
y
RG y 


  is the sensitivity of the inversion to the measurement. We can rewrite the previous expression as 

follows : 

   aaa xb,xFRxx̂       … bias    

 axxA       … smoothing    

 + yG  …  retrieval error (56) 

Where : 

 
X
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ˆ  (57) 

 

The rows of the matrix A (n x n) are the averaging kernels ("noyaux moyens") which can be considered one by 

one as the functions responsible for smoothing (averaging function) of the corresponding retrieved parameters. 

Each element of the result which comes from the retrieval appears as the product of the true values or retrieved 

by the corresponding averaging function. 

Under favorable conditions, the averaging kernel are "peaks" functions whose width at half maximum gives an 

estimate of the vertical resolution of the observing system. Ideally these averaging kernels are Dirac peaks. The integral 



of the averaging kernel area, usually close to unity, determines the contribution to the measurement retrieved 

parameters returned.  

 

 

  
Averaging kernels for ozone profile retrieval from IASI-balloon experiment 

 Using averaging kernels and weighting functions it is possible to establish the sensitivity of the retrieval for each 

retrieved parameter and then to make an optimal selection of the parameters by keeping first those who have the 



greatest sensitivity spectrum and thus which are the most “exploitable” by the radiative transfer model. This saves 

computation time by limiting the number of parameters that are to be retrieved, but also quality of spectrum fit and of 

retrieval. With fewer parameters to retrieve while maintaining good flexibility in the fit avoids too much correlation 

between parameters, which generally introduces compensating effects that can lead to non-physical solutions.  

 

3.3 	 Informational	entropy	/	degrees	of	freedom	

 The number of degrees of freedom of a given signal can be considered as a measure of information. Rodgers takes 

the concept of information in the formulation of Shannon and apply them to inverse problems in atmospheric 

soundings. From the information entropy and the concept of degrees of freedom it is possible to estimate the 

information contained in a spectrum for a given chemical species  

 For more details, you can consult the Clive Rodgers book. We just give here the expression for the number of 

degrees of freedom : 
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where i are singular values of the matrix K~ defined by : 

 2/1
a

2/1 SKSK~    (59) 
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 Example: DOFS for nadir looking CH4 retrieval 



4 Analysis	and	characterization	of	errors	

 



In the linear approximation of the retrieval method presented above, we can write the total error as the sum of four 

terms.  

4.1 	 The	different	sources	of	error	

Resuming the transfer function. The state vector is a reversed function of the  : 

 
The relation with the real state X is the following : 

 
That we can represent as follows : 

 
 

 

 



By linearizing the transfer function, Clive Rodgers shows that we can write the error of retrieval in the following form : 

 

  Sensitivity to the real state: averaging kernels. 

  Sensitivity to noise measurement 

 Sensitivity to non-retrieved parameters 

 Sensitivity to the inverse method 

 

The sum of the first two terms (smoothing error or smoothing, and measurement error) may be associated with the 

internal errors, which are specific to the viewing geometry and performance of the instrument, while the sum the other 

two terms, associated to the atmosphere knowledge is the external error.  

 

Some of these terms are easy to estimate, and the other not. 

 



4.2 	 Measurement	noise	

The measurement error is due to the instrumental noise. Its covariance matrix is given by: 

 

4.3 	 Smoothing	error	

This error considers smoothing true profile (or the true state vector) by means nuclei. The covariance matrix of the error 

smoothing is given by: 

Ss = (A – I) Sa (A – I)T 
To determine properly this error it is necessary to have a good knowledge of the climatology covariance of the target 

parameters. 

  

4.4 Forward	model	parameters	

This is the error on the non-retrieved parameters of the forward model. Its covariance is written : 

( )T
p b b bS GK S GK  

Where Sb is the covariance matrix representing the uncertainty on the fixed parameters of the forward model. 

 



4.5 Forward	model	

 
Often very difficult to determine because it requires a model f to quantify the differences between the forward model 

and physical reality ...  

 

4.6 	 Covariance	error	matrix	

The total error covariance matrix is then given by: 

( ) ( )T s m p cs   S S S S S  

 

 

         



5 Other	methods	

There are other methods to "inverse" the atmospheric spectral measurements. One of them is based on artificial neural 

networks. It is a computational model whose design is inspired schematically from the operation of biological neurons.  

Neural networks are generally optimized by probabilistic learning methods, especially Bayesian. 

     
Neural network has generally a "training" algorithm that consists in modifying the synaptic weights according to a set 

of data presented to the input of the network. The purpose of this training is to enable the neural network to "learn" 

from examples. If the training is properly performed, the network is able to provide output results very close to original 

values of the set of training data. 

But the whole point of neural networks lies in their ability to generalize from the test set. 
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