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q Major impact of air pollution on public health and ecosystems

q Better knowledge of atmospheric chemistry and its environmental 
impacts
➙ Only satellites can observe pollutants at the regional and global scales

²How to observe air pollutants near the surface from space ?

²How to improve chemistry-transport models using satellite 
observations ?

Observing air pollutants from space

	

Mortality associated to Ambient Air
Pollution in 2010
Lelieveld et al., 2015



q Severe impact on public health and ecosystems

Irritation of respiratory system Limitation of photosynthesis Necrosis on leaves

Ozone Pollution



Atmospheric 
profile

Atmospheric 
radiative 
transfer 

calculation

Retrieval approach :
Iterative minimization 

of a cost function :

Atmospheric 
spectrum
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• Constrained fit of calculated spectra with respect to 
atmospheric measurements

• Constraints R: control of resemblance between a priori 
knowledge of the atmosphere and the retrieved profiles

• Other approaches also exist (neural networks, look-up-
tables, DOAS)

Remote sensing of the atmospheric composition

Spectroscopic 
databases

PASSIVE spectrally-resolved measurements
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Minimization of the following function: 

Radiative transfer model

Satellite measurement

Variance-covariance matrix 
of radiometric noise

Climatological average 
a priori

Constraint matrixCalculated spectrum

O3 profile in the 
atmosphere

Inversion method
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- AVK à Averaging Kernels allow the evaluation of the 
sensitivity of the retrieved profile with respect to the real profile

- Degree of freedom (DOF) : 

à Number of independent points on the vertical (sensitivity to O3)

- Maximum sensitivity height (Hmax) : Altitude of the maximum 
AVK value (i.e. the maximum sensitivity) 

Hmax

à Retrieved O3 profile : 

Inversion method



Ozone remote sensing from space
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Nadir atmospheric spectrum at the UV/Visible
Spectra from GOME satellite radiometer: 

1) Directly pointing the sun (Sun irradiance è once a day)
2) Backscattered light from Earth (Earth radianceè every pixel)

Units

The ratio is 
reflectance
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1978 –
Based on the UV backscattered radiations

TOMS: Total Ozone Mapping Spectrometer

Ozone total column



GOME: Global Ozone Monitoring Experiment

Liu et al., 2005

derive ozone profiles and Tropospheric Column Ozone
(TCO) from GOME sun-normalized ultraviolet radiances
with the OE technique. We validate our retrievals against
TOMS and Dobson/Brewer (DB) TO measurements, ozo-
nesonde TCO and Stratospheric Aerosol and Gas Experi-
ment II (SAGE-II) profiles. The paper is organized as
follows. Section 2 describes the GOME data and the
correlative data used for intercomparison. In section 3, we
give a detailed description of the ozone profile retrieval
algorithm, retrieval characterization, and error analysis.
Section 4 shows examples of retrieved ozone profiles and
global distribution of TCO. In section 5, we present the
comparison with correlative measurements, which also
serves to assess the accuracy of our retrievals. Section 6
summarizes this study.

2. Instruments and Data
2.1. GOME

[6] ERS-2 is a near-polar sun-synchronous orbit satellite
with a mean local equator crossing time of 10:30 am.
GOME, on board ERS-2, is a nadir-viewing spectrometer
that measures radiances in four continuous bands (i.e., 237–
315 nm, 312–406 nm, 397–609 nm, and 576–794 nm).
Under normal operation, the GOME instrument, scans
across track from east (!"30!) to west (!30!) and back
with a swath of 960 km, so that global coverage is achieved
in three days in the equator. One nominal scan cycle of
GOME lasts 6 s, 4.5 s for the forward scan and 1.5 s for the
back scan; the forward scan consists of three pixels each
with an area of 320 # 40 km2 and the back scan consists of
one pixel with an area of 960 # 40 km2. Because of the
large dynamical range of the signal in band 1, it is divided
into two sub-bands (i.e., bands 1a and 1b) at 307 nm before
6 June 1998 and at 283 nm afterwards. The integration time
for band 1a is 12 s, corresponding to 8 band-1b or band-2
pixels [ESA, 1995]. Because ozone profile retrievals use
measurements in both bands 1 and 2, 8 pixels of measure-

ments in bands 1b and 2 are co-added to match the band 1a
measurements. Therefore, the spatial resolution of our
retrievals is normally 960 # 80 km2. In addition to radiance
spectra, GOME measures direct solar irradiance via a Sun
view mirror and diffuser plate on a daily basis [ESA, 1995].
The solar irradiance spectrum, measured on the same day, is
used to normalize the measured earthshine radiance spectra.
[7] To validate the retrievals against TOMS, DB, and

ozonesonde, we collocate GOME data with ozonesonde
measurements (±1.5! latitude and ±12.5! longitude) at 33
selected stations (see Table 1 and section 2.2) during 1996–
1999. To validate against SAGE-II retrievals, we use the
GOME data during 1996–1999. We use version 2.0 GOME
Data Processor (GDP) extraction software [DLR, 2002],
including all standard corrections (e.g., leakage current,
stray light, polarization, degradation).

2.2. Other Data

[8] Ozonesonde data during 1996–1999 from 33 stations
(Figure 1 and Table 1) are used to validate GOME TCO. For
a global validation, we include stations from the far north
(e.g., Resolute, 74.7!N) to the far south (e.g., Neumayer,
70.7!S) with at least one station in each 10!-latitude band
between 80!N–80!S. Data was primarily obtained from
World Ozone and Ultraviolet Data Center (WOUDC, http://
www.woudc.org). Some data unavailable or incomplete at
WOUDC are directly obtained from the data originators (see
Table 1). The measurements were made with three types of
ozonesonde (Table 1). Ozonesonde techniques have differ-
ent precisions, accuracies, and sources of errors. The Jülich
Ozone Sonde Intercomparison Experiment (JOSIE) showed
that measurements with different types of ozonesondes are
typically within 10–20% with respect to the accurate UV
photometer measurements and it was found that the preci-
sion of electrochemical concentration cell sondes is 5%,
better than those of Brewer Mast and carbon iodine sondes
(10–15%) [WMO, 1998]. The SHADOZ measurement
precision is also estimated to be ±5% [Thompson et al.,

Figure 1. Three-day composite global map of tropospheric column ozone on 22–24 October 1997. The
symbols indicate ozonesonde stations (circles) with and without (triangles) Dobson or Brewer total ozone
observations.
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D20307Ozone tropospheric column

(up to about 12 km at mid-latitudes)
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Earth thermal infrared spectrum measured by IASI



Clerbaux et al., 2009

Which information from the infrared spectrum?



IMG: Interferometric Monitor for Greenhouse gases
• Japanese mission ADEOS

• Launch in August 1996

• Michelson Interferometer
• Spectral range 740-3030 cm-1

• Spectral Resolution 0.1 cm-1

• Spatial Resolution - 3 pixels of 
8km*8km

Ozone 
vertical 
profile

Coheur et al., 2005



TES/Aura: Tropospheric Emission Spectrometer 

Spectral Resolution at Nadir : 0.1 cm-1

But no across-track scanning



• In orbit since 2006 aboard 
MetOp-A and expected for at 
least 15 years with MetOp-B and 
MetOp-C

• Global coverage twice daily 
(morning ~ 9:30 LT, evening 
~ 21:30 LT)

• Spatial resolution : 25 km (at nadir)
• Across track swath : ~ 2000 km
• Spectral resolution : 0.5 cm-1

IASI
(IR)

GOME-2
(UV-Vis)

• Spatial resolution : 40 x 80 km2

• Across track swath : ~ 1920 km
• Spectral resolution : ~ 0.24 nm

And after 2020, A New Generation of satellites : EPS-SG  with IASI-NG and UVNS  

MetOp satellites è New performances to observe 
ozone pollution



LT sensitivity maximum around 3 km

Possibility to discriminate 
between Lower 

Troposphere and Upper 
Troposphere when thermal 

conditions are favorable

Validation against ozonesondes:

Mid-latitudes bias : < 2.5%

Precision : ~15% [Dufour et al., 2012]

IASI (IR) 

Averaging kernels

Over land DOFs up to 6 km :  ~ 0.6
up to 12 km :  ~ 1.2

Sensitivity of IASI retrievals of ozone

IASI è Lower tropospheric ozone



[Eremenko et al., 2008]

First observations of an ozone pollution event from space



Monthly evolution of lower tropospheric ozone 
at East Asia – year 2008

January - winter April May

June August October - fall

Dufour et al. 2015



Monthly evoluation for selected regions

Dufour et al.



Role of stratosphere-troposphere exchanges

IASI LT O3 columns

IASI UT O3 columns

Tropopause height

Large ozone values observed in the north of East Asia are 
likely due to dynamical processes:
• large scale descending transport after cold fronts
• lower tropopause height after these fronts

Dufour et al. 2015
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Multispectral approach IASI+GOME2 

Cuesta et al., 2013

New approach of joint inversion of IR and UV co-localized spectra

O3 profile

Atmospheric and 
surface conditions

UV (VLIDORT)

Radiative transfer
models

IR (KOPRA)

UV Reflectance

Simulated spectra

Observed spectra

IR Radiance

Simultaneous 
minimisation of UV 

and IR residuals

GOME2 spectrum

IASI spectrum

Adjustment 
of unique O3

profile

Iterations

Multispectral 
retrieval for each 
satellite profile

Enhancement of 
sensitivity to 
lowermost 

tropospheric O3 Al
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Simultaneous fit of 
IR and UV spectra 

Adjusting a unique 
Ozone profile and instrumental 

parameters
UV Reflectances IR Radiances

∼6.5%
∼0.20 % ∼0.35 %

Multi-spectral fit



Similar results with UV cross sections -5% or HITRAN2010

Ozone spectroscopy coherence between UV and IR?



Good agreement with sondes:
àWeak mean bias àGood correlation àGood variability

Validation of IASI+GOME2 at the Global scale
IASI+GOME2 vs O3 sondes from 44 stations in 2009 and 2010

Lowermost tropospheric ozone : surface-3 km asl partial columns

IA
SI

+G
O

M
E-

2

IA
SI

+G
O

M
E-

2



IASI (IR) GOME-2 (UV) IASI+GOME-2

Two semi-
independent 
tropospheric 

partial 
columns

Higher
sensitivity 
for lower 

layers

Sensitivity of the multispectral O3 retrieval: AVK



IASI (IR) GOME-2 (UV) IASI+GOME2

0.25 DOFs over land 0.15 
DOFs over ocean <0.10 DOFs 0.35 DOFs over land 0.25 

DOFs over ocean
DOFIASI + 40% 

Sensitivity of the multispectral O3 retrieval: Degrees of 
freedom in the Lowermost Troposphere (up to 3 km asl)



IASI (IR) GOME-2 (UV) IASI+GOME2

3 km agl over land
4.3 km agl over ocean 3.7 km agl

2.2 km agl over land 3.5 
km agl over ocean

HIASI - 800 m

Sensitivity of the multispectral O3 retrieval: Height of maximum 
sensitivity in the Lowermost Troposphere (up to 3 km asl)



A moderate O3 pollution episode over Europe:
18 to 21 August 2009

20 August 2009 at 10 am : O3 Surface – 6 km

CHIMERE outputs CHIMERE Switching off 
O3 precursor emissions

since 01/08/2009 

➙ Almost all O3 plumes were 
photo-chemically produced with 

emissions from Europe 

Cloud
front

Anti-cyclonic 
conditions

W
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m
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or
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Western O3 plumes
➙ up to the lower free 

troposphere
Eastern O3 plumes
➙ below  3 km (LMT)



Satellite observations of the O3 pollution event :
IASI+GOME2 vs. sing-band approaches

IASI (IR) GOME-2 (UV) IASI+GOME2

19 August 2009

Continental western O3 plumes depicted 
by both IASI and IASI+GOME2 ➙ up to 4-5 km asl 

Eastern and over sea O3
only observed by

IASI+GOME2



IASI (IR) GOME-2 (UV) IASI+GOME2

20 August 2009

Satellite observations of the O3 pollution event :
IASI+GOME2 vs. sing-band approaches

Continental western O3 plumes depicted 
by both IASI and IASI+GOME2 ➙ up to 4-5 km asl 

Eastern and over sea O3
only observed by

IASI+GOME2



Plumes
below 

3 km asl

19 August 2009
IASI+GOME2 vs. CHIMERE : LMT and above
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19 August 2009
IASI+GOME2 vs. CHIMERE : LMT and above
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19 August 2009
IASI+GOME2 vs. MODELS at the LMT (<3 km):
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Good agreement with 
both models in the 

overall structure of O3
plumes at the LMT



Only 
modelled 

by CHIMERE
& 

captured 
by 

IASI+GOME2

19 August 2009
IASI+GOME2 vs. MODELS at the LMT (<3 km):
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Assimilation of IASI+GOME2 LT observations into 
CHIMERE+EnK:

IASI+GOME2 CHIMERE analysis*AVK
19 August 2009

O
3 (DU) Surf.-6 km

 asl

CHIMERE (analysis – forecast) at 10h00 am

6 km 3 km Surface



19 August 2009
Assimilation of IASI+GOME2 into CHIMERE:
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partial columns

with CHIMERE+EnK



2 pollution episodes: 4-9 April and 4-9 May 2009
Cases with gradientsurface-2 km < 20 ppb (according to CHASER)

ü Good correlation: Currently unique!!!
ü Weak mean bias
ü Precision near expected IASI+GOME2 errors

Comparison of IASI+GOME2 vs in situ measurements 
at the surface
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Surface variability of O3 is 
not observed by IASI only 
approach



IASI+GOME2 è O3 at 2 to 3 km

ppb

CO from IASI è Anthropogenic tracer

Potential vorticity at 300 hPa è StratosphereΘeq, geopotential and winds at 850 hPa

H L

ppb

A

Ozone pollution over East Asia from IASI+GOME2
4 May 2009

A



IASI+GOME2 è O3 at 2 to 3 km

ppb

CO from IASI è Anthropogenic tracer

Potential vorticity at 300 hPa è StratosphereΘeq, geopotential and winds at 850 hPa

ppb

5 May 2009

A A

H
L

Ozone pollution over East Asia from IASI+GOME2



IASI+GOME2 è O3 at 2 to 3 km

ppb

CO from IASI è Anthropogenic tracer

Potential vorticity at 300 hPa è StratosphereΘeq, geopotential and winds at 850 hPa

ppb

6 May 2009
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Ozone pollution over East Asia from IASI+GOME2



IASI+GOME2 è O3 at 2 to 3 km

ppb

CO from IASI è Anthropogenic tracer

Potential vorticity at 300 hPa è StratosphereΘeq, geopotential and winds at 850 hPa

ppb

7 May 2009
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Ozone pollution over East Asia from IASI+GOME2



IASI+GOME2 è O3 at 2 to 3 km

ppb

CO from IASI è Anthropogenic tracer

Potential vorticity at 300 hPa è StratosphereΘeq, geopotential and winds at 850 hPa

ppb

8 May 2009
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Ozone pollution over East Asia from IASI+GOME2



ΔO3 /ΔCO is the relative increase of O3, accounting for air masses dispersion and considering 
CO as a passive tracer

Photo-chemical production of O3 during transport

Production of O3 limited 
by NOx concentration

IASI+GOME2/IASI

Ozone pollution over East Asia from IASI+GOME2

Cuesta et al.



O3 pollution over Europe during the COVID-19 lockdown of 
springtime 2020

q Quantify the impact of the COV-19 lockdown on ozone pollution over Europe

q Analyze the link with photochemical regimes : NOx-limited & VOC-limited

Which approach ?

èSynergism of satellite observations, in-situ data and a chemistry-transport model

The new multispectral satellite data 
“IASI+GOME2”

èEnhanced sensitivity to near-surface O3

[Cuesta et al. 2022 ACP]



Observations

Approach to study the impact of COVID19 lockdown
on ozone pollution

Satellite

In-situ
2020 vs 2019

Chemistry-transport model 2020 (with reduced emissions COVID)
vs 2020 (standard emissions)

Ambiguity on differences in meteorological conditions

Ambiguity on emissions during COVID lockdown

Comparison & Adjustment for differences meteorological conditions

Complexity 
è Secondary pollutant with non-linear effects according to NOx-limited and VOC-limited regimes



April 2020 (COVID emissions), April 2020 (reference emissions) & April 2019

Model-derived COVID lockdown effect

20 x 20 km2  - 9 vertical levels
Anthropogenic emissions from HTAP v2.2
Meteorological fields from the BOLAM model
MEGAN biological emissions
COVID run : 
↓ road traffic, ↓ industry, ↓ airplane & ship traffic (% from CAMS covid inventory)

! Meteorology correction for observations

The chemistry-transport transport model CHIMERE

CHIMERE v2017 (Menut et al., 2020) 



IASI+GOME2 satellite observation In situ surface
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Satellite IASI+GOME2 vs Surface In situ

Good satellite/in situ agreement on spatial 
distribution and concentrations in absolute value!

Agreement with regimes from
Beekmann and Vautard, 2010

1-15 April

O3 (2020) – O3 (2019) è Lockdown effect + !Meteorology 

In situ measurements at the surface

O
3 (ppb)  <  3 km

O
3 (ppb)  surface



IASI+GOME2 satellite observation In situ surface
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Clear signatures from VOC-limited & NOx-limited regimes from Beekmann and Vautard, 2010

1-15 April
In situ measurements at the surface

O
3 (ppb)  <  3 km

O
3 (ppb)  surface

VOC-limited  
↓ Titration NO è↑ O3

NOx-limited
↓ NOx è↓ O3

Intermediate
regime

Satellite IASI+GOME2 vs Surface In situ

O3 (2020) – O3 (2019) è Lockdown effect + !Meteorology 



IASI+GOME2 satellite observation In situ surface
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Satellite IASI+GOME2 vs CHIMERE model

1-15 April
CHIMERE simulations

O
3 (ppb)  <  3 km

O
3 (ppb)  surface

Not very clear signatures from VOC-limited & 
NOx-limited regimes

O3 (2020) – O3 (2019) è Lockdown effect + !Meteorology 
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“business as usual” inventory
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*+*+ − #".#)!"#

*+*+

Estimation of the impact of the COVID-19 lockdown from 
models and observations

From the CHIMERE model

èAdjustment for changes in meteorological conditions between 2020 and 2019 
using model simulations

From surface & 
satellite 

observations



show the results for the combination of them throughout the
manuscript.

For the characterization of the meteorological conditions, we have
extracted the following fields from the ERA5 meteorological reanalysis
(Hersbach et al., 2020), at 0.75° × 0.75° horizontal resolution, for the
1981–2020 period: daily maximum air temperature at 2 m (T2max);
dailymean fields of the zonal (U10) andmeridional (V10)wind compo-
nents at 10m, 500 hPa geopotential height (Z500), 2-m specific humid-
ity (q) and downward solar radiation flux (SR), and daily accumulated
precipitation (Prec). Although ERA5 data may have some deficiencies
in capturing the local meteorology at some sites, the resolution used
here seems to be appropriate as shown by previous analyses on the in-
fluence of meteorology on surface ozone observations in Europe (Otero
et al., 2016; Boleti et al., 2020). Furthermore, additional analyses based
on NCEP/NCAR meteorological data at 2.5° × 2.5° (Kalnay et al., 1996)
confirm that the results presented in this work are not very sensitive
to the choice of the reanalysis dataset (not shown).

2.2. Statistical model

A generalised additive model (GAM) is a multivariate semi-
parametric regression model that accounts for the additive effect of
the predictors on the predictand and their non-linear relationships.
This tool is commonly used to quantify the influence of meteorology
on air pollutant time series (Dominici et al., 2002; Barmpadimos et al.,
2011; Pearce et al., 2011; Boleti et al., 2018).We have applied this statis-
tical technique, provided by the pyGAM Python module (Servén and
Brummitt, 2018), to each site separately in order to characterise the re-
lationship between the air pollutant concentrations and meteorological
variables. We have built the models using March and April data from
2015 to 2019. In addition to the meteorological drivers mentioned in
Section 2.1, we have also included the occurrence of working vs. non-

working days in the models as it is known to affect the day-to-day evo-
lution of air pollution. This is considered as a categorical variable that
treats both the weekends and Easter holidays as non-working days.
While the model uses spline functions to estimate the pollutant re-
sponse to continuous variables, the categorical variables are fit using
factor functions, with fixed constant values for each categorical attri-
bute. The general form of the model used in this work is as follows:

Y ¼ β0 þ
X

x
sx Axð Þ þ

X

y
fy By
! "

ð1Þ

where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.
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For the characterization of the meteorological conditions, we have
extracted the following fields from the ERA5 meteorological reanalysis
(Hersbach et al., 2020), at 0.75° × 0.75° horizontal resolution, for the
1981–2020 period: daily maximum air temperature at 2 m (T2max);
dailymean fields of the zonal (U10) andmeridional (V10)wind compo-
nents at 10m, 500 hPa geopotential height (Z500), 2-m specific humid-
ity (q) and downward solar radiation flux (SR), and daily accumulated
precipitation (Prec). Although ERA5 data may have some deficiencies
in capturing the local meteorology at some sites, the resolution used
here seems to be appropriate as shown by previous analyses on the in-
fluence of meteorology on surface ozone observations in Europe (Otero
et al., 2016; Boleti et al., 2020). Furthermore, additional analyses based
on NCEP/NCAR meteorological data at 2.5° × 2.5° (Kalnay et al., 1996)
confirm that the results presented in this work are not very sensitive
to the choice of the reanalysis dataset (not shown).

2.2. Statistical model

A generalised additive model (GAM) is a multivariate semi-
parametric regression model that accounts for the additive effect of
the predictors on the predictand and their non-linear relationships.
This tool is commonly used to quantify the influence of meteorology
on air pollutant time series (Dominici et al., 2002; Barmpadimos et al.,
2011; Pearce et al., 2011; Boleti et al., 2018).We have applied this statis-
tical technique, provided by the pyGAM Python module (Servén and
Brummitt, 2018), to each site separately in order to characterise the re-
lationship between the air pollutant concentrations and meteorological
variables. We have built the models using March and April data from
2015 to 2019. In addition to the meteorological drivers mentioned in
Section 2.1, we have also included the occurrence of working vs. non-

working days in the models as it is known to affect the day-to-day evo-
lution of air pollution. This is considered as a categorical variable that
treats both the weekends and Easter holidays as non-working days.
While the model uses spline functions to estimate the pollutant re-
sponse to continuous variables, the categorical variables are fit using
factor functions, with fixed constant values for each categorical attri-
bute. The general form of the model used in this work is as follows:
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where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
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no significant biases and constant residual variance (homocedasticity),
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tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
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no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).
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ground sites during 15 March – 30 April 2020 with respect to the same
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Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
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in capturing the local meteorology at some sites, the resolution used
here seems to be appropriate as shown by previous analyses on the in-
fluence of meteorology on surface ozone observations in Europe (Otero
et al., 2016; Boleti et al., 2020). Furthermore, additional analyses based
on NCEP/NCAR meteorological data at 2.5° × 2.5° (Kalnay et al., 1996)
confirm that the results presented in this work are not very sensitive
to the choice of the reanalysis dataset (not shown).
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the predictors on the predictand and their non-linear relationships.
This tool is commonly used to quantify the influence of meteorology
on air pollutant time series (Dominici et al., 2002; Barmpadimos et al.,
2011; Pearce et al., 2011; Boleti et al., 2018).We have applied this statis-
tical technique, provided by the pyGAM Python module (Servén and
Brummitt, 2018), to each site separately in order to characterise the re-
lationship between the air pollutant concentrations and meteorological
variables. We have built the models using March and April data from
2015 to 2019. In addition to the meteorological drivers mentioned in
Section 2.1, we have also included the occurrence of working vs. non-

working days in the models as it is known to affect the day-to-day evo-
lution of air pollution. This is considered as a categorical variable that
treats both the weekends and Easter holidays as non-working days.
While the model uses spline functions to estimate the pollutant re-
sponse to continuous variables, the categorical variables are fit using
factor functions, with fixed constant values for each categorical attri-
bute. The general form of the model used in this work is as follows:
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where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.
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where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
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continuous feature Ax (meteorological field). fy(By): factor function on
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The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.
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respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
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sponse to continuous variables, the categorical variables are fit using
factor functions, with fixed constant values for each categorical attri-
bute. The general form of the model used in this work is as follows:

Y ¼ β0 þ
X

x
sx Axð Þ þ

X

y
fy By
! "

ð1Þ

where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.
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COVID-19 lockdown impact on O3 pollution
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Agreement over France, Benelux and Italy. 
The model : è underestimates the accumulation of O3 over the Po Valley 

èoverestimates that over Germany and Poland
èMisses the large-scale reduction 
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Global production and distribution of IASI+GOME2 multispectral satellite 
observations starting in 2017
http://www.aeris-data.fr



IASI+GOME2 Ozone from surface to 3 km a.s.l. (2017-2021)
30°N-60°N

0°-30°N

0°-30°S

30°S-60°S

-0.69 ppb/yr (p>0.01)

-0.49 ppb/yr (p>0.01)

-0.11 ppb/yr (p>0.01)

-0.40 ppb/yr (p>0.01)

Trend of Zonal Mean Ozone

Global decreasing trend, especially at middle 
latitude in Northern Hemisphere

Multi-annuel evolution of O3 pollution at global scale

2017   2018   2019   2020   2021

è 5 years of global IASI+GOME2 data at

…   2014   2015   2016Currently in production at TGCC/CEA 



September-October-November 2017 

Chemical reanalysis

• CAMSRA (Innes et al., 2019)

• TCR-2 (Miyazaki et al., 2020)

IASI+GOME2 (surface-3 km) CAMSRA (850 hPa)

TCR-2 (850 hPa) Standard deviation
Global distribution is 
roughly similar but we can 
see some large standard 
deviation regions 

S.D. is calculated from the seasonal 
values of the three datasets

Global comparison : IASI+GOME2 vs Chemical reanalysis



The future
• Upcoming satellite missions with better performances è ESP-SG & MTG

Improvement on 
pollution forecast

3 EU controlled 
pollutants (CO, O3

and NH3)

Better tracking of 
long range 

pollution (e.g. fire
emissions)

For T, WV, O3, CO, CO2, etc : more information on the vertical.  
For weak absorbers : improved detection limit + more species measured instead of detected

Improved volcanoe
alerts

Early alerts possible +  
SO2 and ash tracking

Essential Climate 
Variables 

monitoring and 
understanding
Clouds, GHG, 

aerosols

Atmospheric 
profiling

IASI-NG 
& UVNS



KOPRA

VLIDORT

MOCAGE

model

analysis

State of the 
atmosphere

IR
radiance 
spectrum

UV /VIS  
reflectance
spectrum

KOPRAfit « Observed »
Ozone

Comparison

Pseudo-reality Pseudo

-observations
Inversion

Forward calculation

71

à For quantifying the added values of future satellite observations

Pseudo-observation simulator



Sensitivity enhancement with IASI-NG+UVNS

IASI+GOME2 IASI-NG+UVNS
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Quality !!

IASI-NG è ½ radiometric noise and ½ spectral resolution wrt IASI
UVNS è 1/3 radiometric noise and 2 x spectral resoluiton wrt GOME-2



Observation of O3 pollution with IASI-NG+UVNS

Ø O3 plumes below 2 km of altitude
Ø Better vertical resolution

IASI+GOME2 IASI-NG+UVNS



Some conclusions

vSpectrally-resolved satellite observation are widely used to study 
atmospheric chemistry and air pollution

vRetrieval approaches are designed for extracting the information on the 
3D distribution of atmospheric constituents from spectra measured in the 
UV, Visible, IR and Microwaves

vThe performance for deriving the atmospheric composition relies on:
üThe quality of the atmospheric measurements (calibration, 

resolution, knowledge of errors, etc.)

üThe quality of the “direct” model (spectroscopy databases, 

physical representation of the atmosphere and surface) ➙
particularly for multispectral approaches

üAppropriate constraints of the retrievals

vMultispectral approaches are promising tools for observing air 

pollution (sensitivity for lowest layers, 3D distributions, etc.)
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